
UCRL-ID-150006

UAV Cooperation
Architectures for Persistent
Sensing

R. S. Roberts, C. A. Kent, E. D. Jones

March 20,2003

This document was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor the University of California nor
any of their employees, makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or the University
of California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or the University of California, and shall not be
used for advertising or product endorsement purposes.

UAV Cooperation Architectures for Persistent Sensing

Randy S. Roberts, Claudia A. Kent, and Erik D. Jones

Lawrence Livermore National Laboratory,
Livermore, CA 94550 USA

ABSTRACT

With the n u m b e r of smal l , inexpensive U n m a n n e d Air Vehicles (U A V s) increasing, i t i s
feasible t o build m u l t i - U A V sensing ne tworks . In particular, b y us ing U A V s i n conjuc t ion
w i th unat tended ground sensors , a degree o f persistent sensing can be achieved. With proper
UAV cooperation algorithms, sens ing is maintained even though exceptional events , e.g., the
loss of a U A V , have occurred. In th is paper a cooperation technique tha t allows multiple U A V s
t o per form coordinated, pers i s ten t sensing wi th unat tended ground sensors over a wide area
i s described. T h e technique automatically adapts t he U A V paths so t ha t o n the average, the
a m o u n t of t i m e t h a t a n y sensor has t o wai t f o r a U A V revisit i s m in imi zed . W e also describe
the S imu la t ion , Tactical Operations and Miss ion Planning (S T O M P) software architecture.
T h i s architecture is designed t o help s imula te and operate distributed sensor ne tworks where
mul t ip le U A V s are used t o collect data.

Keywords: Unmanned Air Vehicles, Robot Cooperation, Automated Sensing, Distributed Sensing

1. INTRODUCTION

With the development of low cost, high endurance Unmanned Air Vehicles (UAVs), it is now practical
to perform autonomous sensing and data collection over broad areas. These vehicles offer the ability
to sense the environment directly through on-board sensors, or vicariously through sensors placed
within the region. Indeed, by coupling a network of UAVs with unattended ground sensors, a degree
of persistent sensing, i.e., continual collection and analysis of sensor data, can be achieved. In such
networks, UAVs act as intelligent agents using the ground sensors to collect data in critical areas
such as choke points and areas of ingress. As the UAVs fly overhead, data is uplinked from the
ground sensors, analyzed and fused with data from other UAVs, and acted upon. Particular actions
that a UAV might take depend on the sensing task. For example, the ground sensors might serve
as tripwires to alert overhead UAVs to the presence of an intruder. In turn the UAV might activate
an onboard imaging sensor, commence transmitting imagery to an operator, and search the vicinity
of the ground sensor to obtain imagery of the intruder.

A critical aspect of the sensing scenario described above is the continual presence of a UAV
to interact with ground sensors. Although a single UAV is useful for deploying new sensors and
can provide communication services to isolated sensors, its failure can be catastrophic to the sensor
network. Alternatively, the advantages of using several autonomous UAVs in concert to collect sensor
data are manifold. Multiple vehicles allow sensing to be performed in parallel, thereby reducing the
amount of time required to gather data. Moreover, if a vehicle becomes disabled, the remaining
vehicles can continue sensing, albeit at a reduced collection rate.

There are two fundamental problems associated with using a fleet of UAVs to autonomously
collect sensor data. The first problem is that of constructing efficient routes that allow the UAVs
to collect data without duplicating effort or interfering with one another. This particular type of
routing problem is fundamentally one of combinatorial optimization. A heuristic solution to this
problem is reported in 111, with important advancements described in [2]. The second problem is

for the path planning algorithm is the cost function

K

k= 1

where the individual terms c k in the summation are the costs that each path contributes to the
total cost of the network. The exponent a provides a means to balance the desires for minimum
total path cost and roughly equivalent individual path costs. Values in the range of 3 5 a 5 6
have been found to work well in practice. The heuristic solution is generated in three steps: 1) an
initialization step which clusters waypoints into groups, 2) an initial path plan for the clusters, and
3) a balancing operation that tries to minimize the global cost of the routing plan. An overview of
the path planning algorithm is described next.

As reported in [l], the first step of the initialization process is to construct K subnets of sensors
s k , from the N sensors in the network. The subnet construction procedure is based on a modified K-
means algorithm. The modification to the standard K-means algorithm occurs in the initialization
of the algorithm. Typically, a K-means algorithm initializes by randomly selecting K samples from
a set (sensor positions in our case), and using these samples as the initial centroids of K clusters [5].
This type of initialization was found to produce poor subnets. Rather, the initial cluster centroids
are found by randomly selecting K out of N samples, finding the pair of samples with the minimum
distance between them, and replacing one of the samples with a new sample. This process continues
until K widely separated samples are found. After these initial sensors have been determined, the
K-means algorithm proceeds in the customary manner.

After the initial subnets have been formed, paths are constructed which connect all of the sensors
in the subnet. Path P k through the kth subnet is constructed by first finding a circumferential path
around S k , and then including sensors interior to the circumferential path. The circumferential path
around s k is found from the convex hull of s k . Sensors in the interior of the subnet are added to
path P k in positions that minimize their contribution to the global cost (5). The differential cost of
adding sensor sq to the path between sensors si and s j is found by breaking link lij into links l i ,
and l , j , and is given by

Interior sensors are inserted into path P k at the position that minimizes (6). The process of adding
interior sensors to the path continues in this manner until all sensors in the subnet have been assigned
a position in the path.

Aciqj = ciq + cqj - cij (6)

After the initial paths to all sensors in the network have been computed, the UAV route structure
of the overall network is balanced (optimized) by shifting sensors between subnets. Consider paths
p and p' in two neighboring subnets. The differential cost of delinking sensor s j from sensors si and
S k in path p and inserting it into the link between waypoints sm and sn in path p' is given by (cf.
(5))

AC = AC, + ACp, (7)

If a particular combination of j , {i, IC}, {m, n} , and { p , p ' } yields a AC < 0, then the global path
cost will decrease if the move is performed. By testing all sensors in all links of all paths in the
network, and moving only those sensors that decrease the global path cost, an optimal path (and
subnet) configuration is obtained.

For a fixed route cost structure, i.e., where cij is constant, K UAV paths can be computed
using the algorithm described above. In order to optimize the route structure for the UAV data

collection problem, it is necessary to use an appropriate cost function. In the data collection scenarios
previously described we desire to minimize the amount of time required for a UAV to collect and
process all of its data. Hence, the appropriate cost function is based on the amount of time required
for a UAV to collect, analyze and act upon the data in its subnet. Thus, element cii of the cost
matrix is given by

cij(t) = rij + Ati

where rij is the amount of time required for a UAV to traverse from the ith sensor to the jth sensor
and At, is the amount of time that the UAV dwells at the ith sensor. Observe that this cost metric
is highly applicable to the problem of collecting data with UAVs. For instance, headwinds and other
disturbances can greatly increase the time it takes for a UAV to collect data in its subnet. As the
amount of time that it takes to collect data increases, the cost of the data collection increases and
the UAVs can react by spreading the increased cost over the network.

The quantities rij and Ati are random quantities, and are thus required to be estimated by the
UAVs. Prior to a UAV flying between sensors si and s j and collecting data at sensor s j , we can only
guess at values for rij and Ati. After a UAV has flown this route and collected data, the amount of
time that has transpired can be measured. To accomodate both situations, two techniques are used
to estimate the cost of the link. Denote the distance between si and s j as dij and the maximum
speed and acceleration of the UAV as V,,, and A,,,. If the sensors are spaced such that the UAV
has time to accelerate, cruise and decelerate without overshooting the sensor, then the travel time
can be approximated as

After a UAV has traveled the link, the travel times are measured and filtered to yield estimates Fij.
The dwell time measurements are processed in a similar manner to yield estimates A&. The cost
estimates are given by either the preliminary distance-based estimates, or the filtered measurement-
based estimates:

Finally, the cost of the subnet is given by

i=l

An example of the routes produced by this algorithm is illustrated in Figure 1. That figure shows
the route plan produced for fourteen UAV and eighty sensors. Other examples of the route planning
algorithm are shown in Figure 3.

3. UAV AUTOMATION

The path planning algorithm previously described is suitable for relatively static scenarios where
the number of UAVs and waypoints does not change, and the costs associated with collecting data
remain relatively constant. However, in many scenarios of interest the number of UAVs and sensors
change as well as the cost of collecting data. In these situations we desire an automation architecture
that can adapt the network routing structure as conditions warrant. Recall that the data collection
task is defined by a set of waypoints, i.e., spatial coordinates, where a UAV collects data. Data
collection can be performed by operating onboard sensors, or by uplinking data from unattended
ground sensors placed within a region.

Our investigation resulted in several control architectures based on hierarchical or distributed
control of network adaptation, and variations in the route optimization algorithm developed in [I].
Essential to these architectures is a cost associated with the sensing task performed by each UAV (a

Figure 1. Illustration of route planning for 14 UAVs and 80 waypoints

generalization of the cost metric used in [l]). This cost information is continually estimated by each
UAV, and shared throughout the network. In the hierarchical architectures, one UAV is selected to
lead network adaptation. This leader is not unique, and can be replaced by any other UAV should
the leader leave the network. This type of architecture is useful in small networks where adaptation
needs to be performed quickly. In the distributed architectures, UAVs cooperatively perform local
network adaptation by locally optimizing the costs of their subnets. These architectures are useful
in large networks where local sensing costs can change rapidly.

With adaptability in mind, an automation architecture for collecting data with a fleet of UAVS
was developed. The architecture is designed to adapt the network route structure to the following
exceptional events:

1. UAVs are added or removed from the network

2. Waypoints are added or removed from the network

3. Waypoints change their positions or priorities within the network

These events are fundamental changes to the data collection architecture. More complicated sce-
narios can be decomposed into these fundamental events. Network adaptation can be driven either
globally, locally or by several hybrid schemes [2]. The UAVs share information they gather on the
state of waypoints in the network as well as their own status. Since all UAVs have similar views of
the state of the network, any one UAV can direct global adaptation. Such adaptation is required
if, for example, a UAV leaves the network. In this case, a single UAV recomputes the new route
assignments for all remaining UAVs in the network, and instructs them to begin executing the new
routes. On the other hand, for minor network adjustments, such as a ground sensor moving be-

.. .. .

Engine

t I
Flight
Controller

Onboard

Systems I I

..

Figure 2. Block diagram of the UAV Automation Architecture

tween two subnets, the involved UAVs perform a peer-to-peer transaction where the moving sensor
is transferred from one subnet to the other.

The UAV automation architecture that implements these adaptations is implemented as a set
of algorithmic modules and databases that reside and execute on a control computer onboard each
UAV in the network. It interfaces with the UAV flight controls and instrumentation, the UAV
communications system, and any onboard sensors as illustrated in Figure 2.

The architecture is based on a three-component approach similar to those described in [7]. The
first component, called the sequencer, is a looping structure that the UAV control computer contin-
ually executes. The sequencer, through the controller, takes inputs from various UAV subsystems
including flight controls and communications. Depending on the state of these inputs, the sequencer
branches to different routines designed to react to changing states. The second portion of the ar-
chitecture is the Numerics Engine. The sequencer invokes the Numerics Engine to perform path
planning and related calculations. The final portion of the architecture is the Controller, which
interfaces to the UAV flight controls, communications and any onboard sensors. In the sequel, we
focus on the sequencer modules and supporting databases.

The sequencer consists several algorithmic modules and two databases. The algorithmic com-
ponents of the sequencer include: 1) Waypoint Service Routine, 2) Message Handler Routine, 3)
Network Adaptation Routine, 4) Cost Estimator, 5) Sensor Service Routine, 6) Network Leadership
Routine, 7) Local Route Optimizer, and 8) Waypoint Sequence Routine. The databases contain
information relating to the operation of the network. One database contains data related to all
waypoints in the network. This data includes, i n t e r alia, such information as a waypoint identifier,
waypoint state information, and time of last UAV visit. The second database contains information
related to the UAVs in the network. This database includes, i n t e r alia, unique identifiers for each
UAV and the position of each UAV in leadership succession. The functions of the sequencer modules

are briefly described below.

The Waypoint Service Routine performs data collection tasks specific to each waypoint. Data
collection tasks at each waypoint can vary, depending on the nature of the sensor. Such tasks might
include uplinking data from a ground sensor, or dwelling over a region to observe an event with
onboard video cameras. Similarly, the Sensor Service Routine operates any on-board sensors.

The Message Handler Routine (MHR) processes status messages from other UAVs in the network.
In particular, two types of messages are processed by MHR, a waypoint status message (WSM) and
UAV status message (USM). As the UAVs collect data at waypoints, they broadcast a WSM to all
UAVs in the network. This message contains a variety of information related to the state of the
waypoint. As a result, each UAV has a complete view of all waypoints in the network. Using this
information, the Cost Estimator estimates the cost of each link in the network. This cost is updated
each time a UAV receives a new WSM. In this manner each UAV can track the cost of every subnet
in the network. The WSM is also used to broadcast the addition or deletion of waypoints from the
network.

Using UAV status messages, each UAV has knowledge of all UAVs in the network. If any UAV
intentionally leaves or enters the network, the other UAVs are informed via a USM. If any UAV
unintentionally leaves the network, a second mechanism is used. The UAV database contains a field
that indicates the health of each UAV in the network. The health of a UAV is determined by its
appearance in the network routing tables. If a UAV appears in the table, it is assumed that the
UAV can communicate and is capable of carrying out its tasks. The Network Leadership Routine,
in conjunction with UAV status messages and UAV heartbeat, determines whether the leader is
functioning. If not, leadership is transferred to another UAV. The Network Adaptation Routine on
the leader UAV monitors the various status messages, and executes a global network reorganization
if warranted.

The Local Route Optimizer (LRO) and Waypoint Sequence Routine (WSR) perform local opti-
mizations. The LRO monitors costs in neighboring subnets, and initiates a local reorganization if
subnet costs are not in balance. The WSR determines the starting waypoint of a UAV’s traverse of
its subnet. The starting point of the traverse is found as the waypoint that minimizing the maximum
amount of time that any waypoint in the subnet must wait for the UAV.

The automation algorithms described here were tested using several thousand Monte Carlo simu-
lations on random networks. The results of these simulations suggest that global reorganizations can
be performed more quickly and optimally for small networks than purely local techniques. However,
the global methods do not scale for larger networks where localized optimizations might have an
advantage. See [2] for more details on the simulations are results.

4. SIMULATION, TACTICAL OPERATIONS AND MISSION PLANNING

In order to gain a deeper understanding of coupling cooperating UAVs with unattended ground
sensors, the Simulation, Tactical Operations and Mission Planning (STOMP) architecture was de-
veloped [3]. STOMP implements the route planning and automation algorithms described in the
previous sections. It contains detailed UAV and sensors objects, and performs the simulations using
Digital Terrain Elevation Data (DTED) as a backdrop. Fundamental to the design of STOMP is its
ability to incorporate real UAVs and sensors into its simulations. In particular, support for the Mi-
cropilot MP2000 autopilot has been implemented into STOMP [9]. Additionally, wireless Ethernet
is available for receiving data from fielded sensors.

A functional block diagram of the STOMP architecture is shown in Figure 4. As illustrated
in the figure, STOMP consists of the following blocks: 1) Sensor and UAV objects (where sensor
objects are depicted as circles, and UAV objects are depicted as hexagons); 2) a Communication
Controller; 3) an Event Controller; and 4) a Display Controller. These objects are briefly described

Figure 3. Four panels illustrating network adaptation. (a) Route of one UAV servicing sensors around a
dam. (b) A second UAV is added to the network. (c) Several more sensors are added to the network, and
the UAVs adjust their paths to accomodate the new sensors. (d) A third UAV is added to the network.

below. See [3] for a comprehensive description.

The UAV and sensor objects contain state information and algorithms necessary for the operation
of both real UAVs and sensors, and simulated UAVs and sensors. The primary components of UAV
objects are a flight controller, communication controller and the automation algorithms. STOMP
UAV objects interact with two other objects: the MP2000 in the case of real UAVs, and the STOMP
event controller in the case of simulated UAVs. For real UAVs the associated STOMP UAV object
transmits waypoint coordinates to the MP2000 and asynchronously receives state updates from
the controller. Virtual UAV objects behave in a similar manner, but interact with the STOMP
event controller. Sensor objects contain data structures to hold sensor data, and a communications
controller. In the case of real sensors, data is transported through the STOMP communications
controller to a wireless Ethernet port. For virtual sensors, data is routed to the STOMP event
controller.

The event controller initializes and executes simulations. It employs a graphical interface that
allows users to script data collection scenarios. It also records the state history of every object in
the simulation. Included in the state history is line-of-sight data for UAV-to-sensor communication
links. This data is useful in analyzing network connectivity patterns.

The communications controller coordinates all communication between the event controller, and
the UAVs and sensors, be they real or virtual. For real UAVs, the communications controller routes
command and control data to the MP2000 autopilot via a wireless serial interface. For real sensors,
the communications controller routes data through a wireless Ethernet port. Packet routing is
managed using the Mobile Mesh [lo] software. STOMP operates at a higher level than routing
software, and thus remains independent of specific communication and routing methods.

During the course of development, several experiments were conducted with small UAVs and
imaging sensors. It was found that the communication channel between the UAV and communication
node was too unreliable for standard file transfer techniques. As a result of these experiments, a
new protocol was devised that allows more robust file transfer. This protocol has been incorporated
into the STOMP communications controller, and it is suitable for a wide variety of UAV-to-sensor
applications.

STOMP has two display modes, one for designing simulations and one for executing simulations.
In the design view objects are placed on a Digital Terrain Elevation Data (DTED) backdrop and
their initial state set. When a simulation begins, the simulator view appears. In this view, the paths
of the UAVs, the positions of the UAVs, and the positions of the sensors on the DTED backdrop
are visible. The state of any object in the simulation can be accessed from this view. As a UAV
acquires new data from a sensor, the sensor’s icon changes color to denote the new data. The new
data can be displayed by clicking on the icon. Although any kind of data can be displayed, STOMP
currently has provisions for displaying imagery. An illustration of a STOMP image display is shown
in Figure 4. In this example, the UAV has flown over a sensor collecting imagery from a bridge.
As the UAV uploads the image, it transmits it to STOMP where the marker for the sensor changes
color indicating new data. The operator clicks on the sensor indicator and the image is displayed.

5. SUMMARY

As inexpensive, high endurance UAVs become available, the use of these vehicles with unattended
ground sensors will become increasingly common. Through the interaction of cooperating UAVs
and ground sensors, continual sensing of an area can be achieved. In this paper, we reviewed a path
planning algorithm suitable for use with cooperating UAVs, and described recent developments to
the algorithm. An architecture for the coordinated operation of a fleet of UAVs collecting data from
the sensors was presented. The architecture is designed to adapt to a variety of fundamental events
so that data collection continues in an optimal fashion. A simulation and operations environment,

0 W

Controller - .

=?I Display Controller

Figure 4. Functional Block Diagram of STOMP and STOMP console display

called STOMP, was developed to further the investigation into the use of UAVs and ground sensors
for data collection and sensing.

6. ACKNOWLEDGEMENTS

This research was performed under a grant from the Laboratory Directed Research and Development
program, Lawrence Livermore National Laboratory. The authors would like to thank Dave McCallen,
Director of the Center for Complex and Distributed Systems, and Don Meeker, Associate Director
of Engineering, for their support of the project. This work was performed under the auspices of the
US . Department of Energy by the University of California, Lawrence Livermore National Laboratory
under contract No. W-7405-Eng-48.

1.

2.

3.

4.

5.
6.
7.

8.

9.

10.

REFERENCES

C. T. Cunningham and R. S. Roberts. A adaptive path planning algorithm for cooperating
unmanned air vehicles. In I E E E Internat ional Conference o n Robotics and A u t o m a t i o n ,
Seoul, Korea, May 2001.
C. A. Kent and R. S. Roberts. Cooperation and path planning for unmanned air vehicles.
Technical Report UCRL-JC-149915, Lawrence Livermore National Laboratory, September 2002.
E. D. Jones, R. S. Roberts, and T. C. Hsia. Stomp: A software architecture for the design and
simulation of uav-based sensor networks. In I E E E Internat ional Conference o n Robotics
and A u t o m a t i o n , Taipei, Tiawan, May 12-17 2003.
E. L. Lawler and et. al. T h e Travell ing Sa le sman Problem. Wiley-Interscience, New York,
1985.
K. F’ukunaga. Introduct ion t o Statistical P a t t e r n Recognition. Academic Press, 1990.
J. O’Rourke. Computa t iona l Geomet ry in C. Cambridge University Press, 1993.
E. Gat. Three-layer architectures. In D. Kortnekamp, R. Peter Bonasso, and R. Murphy,
editors, Artificial Intell igence and Mobile Robotics. AAAI Press / MIT Press, Menlo Park,
CA, 1998.
D. MacKenzie, R. Arkin, and J. Cameron. Multiagent mission specification and execution.
A u t o n o m o u s Robots, 10:29-52, 1997.
Micropilot Corporation. MPZOOO Autopi lot , 2001. Available online at:
htt p://www.micropilot .corn.
MITRE Corporation. Providing Solut ions f o r Mobile Adhoc Networking, 2002. Available
online at: http://www.mitre.org/tech-transfer/mobilemesh.

11. K. O’Rourke. Dynamic routing of unmanned aerial vehicles using reactive tabu search. In 67th

12. G. Barbarosoglu and D. Ozgur. A tabu search fro the vehicle routing problem. Computer s
Mi l i tary Operations Research Sympos ium, November 26 1999.

and Operations Research, 261255-270, 1999.

